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Abstract. Our understanding of cell structure and func- mentaluncertaintiesn measured quantities that are usu-
tion derives from applications of a variety of physical ally assumed to be normally distributed and therefore
and life science disciplines, methods and models to amharacterized by a mean value and a variance defined for
important physiological process, namely, the exchanga specific interval of time over which a number of mea-
and transport of ions and molecules across biologicaburements are made. Changes in mean values of these
membranes. We know that ion transport through memmeasured quantities under different experimental condi-
branes arises from a diversity of interrelated and intertions are often interpreted in terms of physical models.
active physical and chemical phenomena over a wideJntil recently, a key feature of such modeldirsearity,
range of spatial and temporal scales. Among these phesharacterized by two properties: proportionality and in-
nomena common to all cellular structure and functiondependence [39]. Underlying the interpretation of living
include metabolism, kinetics of molecules, chemically processes dsear phenomena is a powerful and persua-
mediated alteration of cell membrane electrical potentialsive axiom of 20th-century medical and life sciences —
membrane ion conductance, electrical signal propagathe principle ofhomeostasis— articulated by Walter B.
tion, and modulation by chemo- and mechanoreceptiv&€annon of Harvard Medical School [6]. Homeostasis
mechanisms. This review focuses on the unique informeans that the normal operation of a physiological sys-
mation contained in fluctuations in electrical propertiestem is to reduce fluctuations and to maintain a constant
associated with cell membrane ion transport. internal function. Homeostasis implies that fluctuations
occur about a presumed normal steady state that may be
Key words: Brownian motion — Cell membrane elec- repre;ented_ (modeled) mathematically as a cpntinuous
trical properties — Fractals — Gaussian noise — |onfpnct|on of time. The poncept that a'mathema_ltlcal func-
transport — Nonlinear dynamics tion and the geometric representation of a line are re-
lated — a seminal idea of the 17th century underlying the
method of calculus — has thus promoted development of
Membrane Electrical Properties Fluctuate theories oflinear systemsas mathematical representa-
tions (models) of physiological processes. In models of
As with many recurring natural events, the resumngbiological membrane function, hqmeostasis and linearity
shape and duration of biological membrane electricaP’€ Served and sustained by a linear network or system
eventsfluctuatein time. The shape (e.g., height, width, with well-deflned. and identifiable inputs and outputs,
etc.) of each event, as well as each time interval of re&tténdant governing processes, and often a mechanism or
currence, is never an exact replication of any previou<enter of control [25].

event. Measured fluctuations may often reflect experi-
Why Membrane Electrical Properties Fluctuate

- Alternatively, fluctuations observed in cell electrical
Correspondence tdB. Hoop properties such as membrane potential may be inter-
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preted as transient responses to a fluctuating envirommodulating physical or chemical processes. A fractal re-
ment over a wide range afcales.Upon initial inspec- lationship is therefore the consequence of physical and
tion, a time sequence of normal fluctuations in magni-chemical processes acting over short times and distances
tude and rate of a measurable quantity appears irregulat the cellular level, and which are correlated with pro-
and completely random. Bsandomis meant that one cesses acting simultaneously over long times and dis-
fluctuation is not related to, andependentf another, tances [25].

i.e., there is no apparent dependence or correlation Fluctuations in polypeptides, in bilayer lipid cell
among fluctuations. If, however, a sequence of events isnembrane proteins, in smooth muscle length and actin-
considered, the fluctuations may look remarkably likemyocin interaction kinetics, and in neurotransmitter-
those observed in shorter or longer sequences. That igxcited coherent G4 waves in cultured glial networks
fluctuations on differentime scalesmay appear to be all have spectral features that suggest long-term correla-
self-similar,like the branches of a geometfimctal ob-  tion [8, 14, 20, 30, 34]. Different experimental methods
ject [27]. In other words, magnitude and rate of eventsthat alter biological membrane electrical activity have
may fluctuate over many scales, even in the absence afuite different physiological effects on events, some of
external stimuli that fluctuate, rather than relaxing to awhich are quite specific and some that are quite general.
homeostatic steady state. This concept — terrhed Electrical stimulation may have a general effect on
meodynamidby West [39] — arises out of recent appli- many, if not all underlying cellular processes, whereas
cations of nonlinear dynamics to living systems and isapplication of a specific chemical or a specific agonist or
based on the premise that there exists a complex of mulntagonist of a chemical receptor site affects, by defini-
tiple states that determines the behavior of healthytion and experimental design, a specific chemoreceptor
living systems. This may be viewed as a spectrum ofsystem and its underlying metabolic pathways [17]. It is
small but superimposed fluctuations in internal mecha-correlation within and between these and other cell
nisms over a wide range of temporal and spatial scalesnembrane phenomena over a wide range of time and
A characteristic of this new paradigm is flexibility of distance scales that underlies the internal regulation of
response andolerance of error.In this paradigm, the ion transport and which implies that fluctuations in mem-
single scale steady state of homeostasis is replaced bytaane electrical properties afiectal noise.

multiplicity of nonequilibrium states that aorrelated

over many scales of time and distance. o . _
Fluctuations in Membrane Electrical Properties are

Fractal Noise
Fluctuations in Membrane Electrical Properties
are Correlated Fractal sets or series are those series whose characteristic

form or degree of irregularity is the same through a suc-
Long-term correlation at the microscopic level is ob- cession ofscalechanges [2]. Theneasureof a set may
served in a variety of structures and processes ranginge the values of any physical observable with units of
from DNA sequences [23, 28] to action potentials [36]. length, area, volume, voltage, etc. Many naturally oc-
Consider, for example, ion channel proteins. These celturring phenomena, like tree ring widths, water table
membrane proteins can have different shapes called comevels, lightning bolt paths, etc., can be characterized by
formational states. There is sufficient thermal energy ina fractal (non-integer) dimension rather than by a Eu-
their environment to cause these proteins to switch sporelidean (integer) dimension.
taneously between different conformational states [15, There are fractal sets, series and structures with the
22]. The switching times between these states have fracsame fractal dimension but with very different features.
tal properties. That is, kineti@te constant@nd related For a fractal structure, the measure of the set increases
parameters of models that are used to describe the prolrith an increase in theesolutionof the measuring in-
ability per unit time that chemically activated membranestrument. In this instance, the double log plot of measure
ion channels will change from a closed to an open stat@against resolution is always a straight line, the slope of
are power lawfunctions of the time resolution used to which is related to the fractal dimension.
determine that probability. A rate constant that describes A temporal fractal is a process that does not have a
ion channel switching serves as an example of one of aharacteristic scale of time, analogous to a geometrical
number of classical linear representations of a cellulafractal structure that lacks a characteristic scale of length.
process in which a well-defined internal timing mecha-For example, in the case of neural electrical activity that
nism can influence the rate or set the pace. An alternagives rise to respiration, the time intervals of phrenic
tive model is that of a conditional process consisting ofnerve bursts have self-similar bursts of activity, power
a sequence of events extending over a time scale whiclaw distributions of the duration of intervals, and a power
is long compared with cellular physiological events suchlaw form of the Fourier power spectral density. (Note
as ion channel switching, but which is short compared tahat we use the wordowerhere in both its mathematical
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and its physical sense.) This neural activity is correlated 20 T
and a large percentage of spectral power is not harmonic
but exhibits a power law relationship. These properties
of temporal correlation, self-similarity, power law distri-
butions of intervals and shapes of the power spectra aré3

——Classical Model
—Fractal Model

examples of processes with properties of fractaise 10 1
[17, 22]. =
3
% 5T
Fractal Processes are Error-Tolerant
0 +—————————+—+—+—+—+—+
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Why are fractal processes ubiquitous in living phenom- Generation t

ena, including the structure and function of membranes?

As suggested above, one reason is that fractal processeg. 1. Comparison of relative error over generatibmith random

are more tolerant to error than are classical processegpise for classical and for fractal scaling (from West & Deering, 1994
This possibility has been demonstrated by West and?#0l with permission).

Deering [40]. Briefly, they consider a simple model of

error response that introduces a random fluctuation into _

the parameters of a classical model and of a fractal moddtractal Noise as a Power Law and a Random Walk

and then by averaging (measuring) over an ensemble of

these fluctuations. West and Deering consider measurd=vents that recur with constant frequencies appear as
ment of a time-dependent phenomenon, (e.g., ion charpeaks (harmonics) in a power spectrum. On the other
nel switching times) as (1) a classical process reprehand, power lawsmay dominate the power spectra of
sented by an exponential law, and (2) a fractal processtochasticprocesses such as noise [33]. A stochastic
represented by power law.Let the variable represent  process is a process that involves a variate at each mo-
the generations of time scales over which measurementsent oftime,where a variate is a variable that may take
are made. Let the scaling factor @te constanfor the  on any of the values of a specified set with a specified
classical process consist of the sum of two parts: a conprobability. Time intervals between heart beats, between
stant and aandom part, and that values of measured steps in a walking gait, and between openings and clos-
guantities are distributed according to a Gaussian probings of ion channels are all examples of stochastic pro-
ability density function with zero mean and variance  cesses.

In the case of Gaussian-distributed quantities, carrying Among the many examples of fluctuating natural
out the average demonstrates that the error grows exp@rocesses in space and time that the wooise may
nentially as the square of [i.e., as expg“%2)]. In the invoke, a familiar concept in biology and physics is that
same way, West and Deering assume that the index fasf a random walkof a particle undergoing Brownian
the fractal process consists of the sum of two parts: anotion (which we’'ll call a Brownian particle). A ran-
constant and aandompart. Again assuming the same dom walk with steps of unit length is often modeled as a
probability density function, the measured fractal quan-Gaussian or normal probability distribution with unit de-
tity is the average over the distribution of time scales, inviation (variance). If each event (step) is independent of
which the error grows exponentially as the square of theanother, with unpredictable direction, we refer to the
natural logarithm ot, [i.e., as expg“(Int)%2]. process asrdinary [5, 16].

The relative error in both the classical and fractal Consider the position of a Brownian particle that is
models fora® = 0.02 is plotted in Fig. 1. In Fig. 1, itis moving inD-dimensions (wher® is the integer Euclid-
clear that ag increases, relative error in the classical ean dimension 1, 2, or 3) from one position at titpéo
model rises rapidly, compared to the fractal model. Foranother position at a later time The position of the
t > 20, relative error in the classical model is >100, Brownian particle is a self-similar stochastic variable
whereas relative error in the fractal model is only 1.10.with parametera = 1/2. To illustrate the concept of
This illustration suggests that a fractal process is esserself-similarity, consider a simplified computational ver-
tially unresponsive to error and very tolerant of variabil- sion of Brownian motion as ®-dimensional random
ity in the physiological environment. Therefore, a pro- walk. Let us denote the position of the random walker at
cess such as membrane ion conduction, with a diversityime t by the stochastic variablet) which is a vector
of inputs over a wide range of temporal and spatial scaleslenoting the position of the random walker at time
and with concomitant sensitivity to error incurred by this Let us consider two simulations of this random walk: In
spectrum of inputs could benefit from the error-tolerantone simulation, the random walker takes a step in ran-
properties of fractals. dom direction of unit length after every unit of time.
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In the other simulation, the random walker takes a step irseries with such moments is said to benstationary.
random direction of two unit lengths after every four For fGn, the average power spectral density or povger
units of time. If we take pictures of the two random frequency varies inversely with frequentyaised to the
walkers for every time step and play the movie of the twopower 2x — 1, where 0 <a < 1. The power spectrum is
simulations side by side, we will obviously see the dif- thus a power law with exponent2- 1. Fora = 1/2,
ference between them. Now let us take one picture of théhe exponent is zero, which is to say that all frequency
two random walks after every four units of time. We components are equally represented, from which the
will therefore have no information about the position of term “white noise” comes, and which is known as ordi-
the random walkers for the times in between. Can wehary Gaussian noise. For other valuescofwe have
still see the difference between the random walks? What'hat is known as fractal Gaussian noise. Ford®<0.5,

if the time resolution is so poor that we can only recordthis noise is negatively correlated and for 0.5 < 1, it

the position of the random walker for every 1,000 time S Positively correlated.

steps? Can we distinguish them now? The fact is, we
cannot distinguish between them by any statistical stud)(vI
(up to a certain accuracy). In other words, there is no
way to know whether we simulate the positig(t) of the
random walker by one unit step of each unit time or by
a two unit step of each four units of time. Expressed in
algebraic terms, the stochastic procegst) is statisti-
cally indistinguishable from (has the same statistical
properties as) the stochastic proce&4wit) [29].

The steps or increments in the position of the
Brownian particle are given by the absolute difference in
the time increment for the two timeésndt, raised to the
power o, and multiplied by a random number. That is

odels of Fractal Noise and Methods of Analysis

To determine the fractal dimension of a measured se-
guence of biological membrane events, we must first be
able to simulate noise witknownfractal dimension and

to recover that fractal dimension with analytic methods.
Fractal noise may be simulated to an arbitrary resolution
using a number of methods [11, 32, 38]. The relation-
ships betwee and the scaling exponents from log-log
plots of several different methods of analysis are de-
scribed in detail by a number of investigators [18, 24,

) h - fh . il ooth ' 31]. Time series of biological membrane events lend
given the position of the Brownian particle at tijethe 0 mselves to analysis with fractal methods character-

position at timet is det(_armingd _by _choosin_g a random ized by a single parameter: the exponentwhich is
number from a Gaussian distribution. This number iSyg|ated to the fractal dimension of the time series. The
then mulnphed_by the absolute value of the t|me differ- magnitude of the exponentis therefore expected to be
ence { - to) raised to the powew. The result is then g sensitive indicator of fractal noise. Fractal methods of
added to the particle’s position at timg to obtain its  analysis include detrended fluctuation analysis [29],
position at timet. As mentioned above, the exponent  power spectral analysis, autocorrelation, relative disper-
= 1/2 for ordinary Brownian motion. In other words, sjon analysis, extended range correlation [2], Fano fac-
for ordinary Brownian motion, the increment in position tor, Allen factor [35, 37], and rescaled range analysis.
is proportional to the square root of the time difference.  Rescaled range analysis is one of the earliest fractal
A generalization of this to any in the range 0 <« <1 methods, first described by Hurst in 1950 [19]. Its im-
is called fractional orfractal Brownian motion(fBm). portance was recognized at once by Feller [12] and sum-
Thederivativeof fractal Brownian motion is called frac- marized in 1983 by Mandelbrot [27] in his classic trea-
tal Brownian noise (fBn) or, alternativeljractal Gaus- tise on the fractal geometry of nature. In brief, the quan-
sian noise(fGn). The derivative with respect tas for-  tity R/S,called the rescaled range, is described by the
mally defined as in the differential calculus for continu- power law,R/STt*, wheret is a time interval called the
ous functions. For a discrete set of uniformly spacedag, and the exponent is called the Hurst exponent.
points, this definition reduces to taking the differencesThe Hurst exponent (often designateldl has the same
between adjacent positions. physical meaning as the scaling exponeiderived from
Fractal Gaussian noise has a variance that does natetrended fluctuation analysis discussed below and will
diverge with time and is thereforgtationary.In com-  be designated as throughout this text. As mentioned
mon usage stationary means that something is not above, in the absence of long-term statistical depen-
changing in time. In the present context, stationarydence,R/Sbecomes asymptotically proportional to the
means only that the moments (e.g., mean, variance) afquare root of (t2 i.e.,a = 1/2) for sequences gen-
the process are defined. Often if the variance in fluctuaerated by statistically independent processes with finite
tions of a time series is determined for increasing inter-variances. This expression is an example of a power law
vals of time, the value of the variance will increase. Thatthat describes a fractal relationship. For positively cor-
is, the sample variance may not reach a limiting finiterelated noise with positive values, the possible slopes of
value but may increase indefinitely with the length of thethe power law relationship on a log-log plot are bounded
time interval used to evaluate it. In the statistical litera-by two extreme values. These values are= 0.5, for
ture, this is known aseteroscedasticity10]. A time  which the data series is indistinguishable from random
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uncorrelated noise, and a value @fhear unity, which  events differs significantly from a value of 0.5. One
represents high near-neighbor correlation and uniformitymethod is to randomly reorder, i.e., shuffle the senes
of the signal over all size scales. times and determine the standard deviation in the mean
In detrended fluctuation analysis (DFA) developedof « derived from then shuffled series. One may then
by Peng et al. [29], a linear relationship between a meaemploy a test for the significance of the difference be-
sure of fluctuation and the time scale interval on a doubléween mearm: determined from the shuffled series with
log plot indicates the presence of scaling. That is, thehe mearx determined from the original series. Another
slope of linear regression of root-mean-square fluctuamethod is to reduce the sampling rate by one-half by
tion F(n) vs.interval lengthn yields a scaling exponent  taking every other data point in the series and again
which characterizes this scaling. For series of events, thdetermininga for comparison witha determined from
cumulative (integrated) departure from the mean is dithe original series. Such tests are essential, particularly
vided into intervals of equal length. A least-squares when one is working with short time series, as has been
line representing therendin each interval is fitted to the repeatedly emphasized and demonstrated by a number of
data. They-coordinates of the straight-line segments areinvestigators [3, 4, 18, 31]. Of equal importance is cor-
subtracted from the integrated values in each interval taection for biases in measured valuesxahtroduced by
detrendthe series. The root-mean-square fluctuationdifferent methods of fractal analysis. As first demon-
F(n) is then calculated over all interval sizes. Different strated by Schepers et al. [31] and stressed by Bassing-
values of the exponent signify different levels of tem- thwaighte and Raymond [3, 4], such corrections to the
poral correlation in fluctuation at different scales. For fractal exponent depend critically not only on the choice
time series of processes where fluctuations are negaf analysis, but on the length of the time series to be
tively correlated (“anti-persistent” noise), we have @< analyzed. Lowen and Teich [26] have made compari-
< 0.5. For time series with consecutive values generatedons of Fano factor and power spectral density analyses
by statistically independent processes with finite vari-for several different stochastic processes, and Liebovitch
ancesa = 0.5 (uncorrelated or “white” noise), and 0.5 and Yang [24] compare different methods of estimating
< a < 1 corresponds to processes where fluctuations ithe Hurst exponent.
subsequent values are positively correlated (“persistent”
noise), wherex = 1 corresponds to power spectraf 1/
noise. Values of in the range 1<« <15, Correspond Fractal AnalySiS of Membrane Electrical Properties
to integrated negatively correlated (“anti-persistent”)
noise, wherea = 1.5 correspond to integrated white Specific neurotransmitters, e.g., acetylcholine (ACh),
(“Brown”) noise [29]. Over the range 0 to 1, and in the play an important role in membrane chemoreception,
absence of biases [17, 18, 31] the Hurst exponent and thaith quantal release from synaptic vesicles taking place
scaling exponend are identical. via exocytosis. Spontaneous neural activity may often
As mentioned above, many biological processesconsist of periodic bursts with well-defined frequency
consist of a series of discrete recurrent events that flucand amplitude. However, noise, (i.e., extended bursts
tuate in time like 1 noise. In 1f noise, the power spec- and bursts within bursts) occasionally develops during
tral density — the Fourier transform into frequerfoyf ~ stimulation with neural active agents. For example,
the autocorrelation function of the time series — behaved$loop et al. [17] show that during ACh stimulation of a
as a power law, ff, wherep is the power law exponent. brainstem preparation at concentrations of 200 to 500
For time series in whiclg = 1, there is no well-defined pmoles/L, noise in respiratory-related neural activity ob-
temporal scale. That is, the current value of the measerved at uniform time intervals is not statistically inde-
sured signal is temporally correlated not only with its pendent and exhibits positive correlation. These inves-
most recent value but also with its long-term history. tigators caution that results derived from very short time
The time series of a recurrent biological signal that fluc-series (64 to 128 events) may not be reliable. Neverthe-
tuates as f/noise is thus said to be scale-invariant [2, less, results for even short series merit more extensive
11]. Schlesinger and West [32] suggest one explanatioinvestigation, because log-log plots do indeed suggest
for this is that the biological process in question haspower law distributions of this noise.
many inputs on different time scales, each of which fluc- It is worth emphasizing that the type of fractal noise
tuate in a random, statistically independent fashion ang@bserved in a time series depends on the specific experi-
which superimpose to yield flhoise. mental observable and the time regime of the observa-
tion. For example, within different time regimes, cell
membrane voltage fluctuations appear to be of the form
Significance of Fractal Exponent and Comparing of fractional Brownian motion (fBm), whereas the incre-
Fractal Methods ments in these fluctuations have characteristics of frac-
tional Gaussian noise (fGn). Churilla et al. [9] were the
There are several practical methods for determinindirst to observe these fractal characteristics of voltage
whether a measured value @ffor a given time series of fluctuations in the membrane of T-lymphocyte cell lines.
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brane potential fluctuations. Values of the Hurst expo-

nent determined from a plot of the logarithm of rescaled

range R/9 vs.logarithm of lag T) are 0.78 and 0.21 for

mV brief time intervals (short lags) and long time intervals

(long lags), respectively. The lower panel of Fig. 2

shows a power spectral analysis of the same data. In this

39— panel, the power spectrum of the differences between

! | ] I 1 successive values of the membrane potential sampled at

; 0.01 sec is shown. Corresponding to what is seen in the

rescaled range analysis (middle panel), there are two dis-
tinct regimes. In both regions, the power is approxi-

mately proportional to fF, wheref is frequency. A

fractal process, such as fGn, produces such a power law

relationship. The investigators suggest that the existence
of regimes that can be fitted by such power law relation-
ships also indicate that the time correlation of membrane
potential fluctuations in this cell line have fractal prop-
erties. For time series in which the increments are frac-
tional Gaussian noise (fGn), the relationship between the
exponentx determined from rescaled range analysis and
the exponeng determined from the power spectrunfis

= 2a — 1. The investigators point out that deviation

from this relationship may depend on error in determi-

nation ofa andp by the two methods, by the magnitude
of «, as well as by the possibility that fluctuations in
membrane voltage do not have exactly the form of fGn.
10 05 0.0 05 10 1.5 In summary, the exponent determines the degree
Log(f Hz/ 11z) of correlation in time series of fluctuations. For k<
0.5, such correlations are negative. That is, increases in

Fig. 2. (Top pane): Membrane potential (in mWs. time in seconds,  the values of the time series are more likely to be fol-

recorded under zero current clamp, as a function of time in a murindowed by decreases. When= 0.5, there are no corre-

T-cell line CL1. Middle pane): Rescaled range analysis of the mem- |ations. That is, increases in the values of the time series

brane potential fluctuations shown above. Values of the Hurst_exponené_re just as likely to be followed by increases as by de-

determined from the plot are 0.78 and 0.21 for brief tlhme intervals creases. When 0.5 & < 1, correlations are positive.

(short lags) and long time intervals (long ags), respectivelpuéer That s, increases in the valhes of the time series are more

pane): Power spectral analysis of the same data (from Churilla et al., ! :

1996 [9], with permission). likely to be followed by increases. If we compare re-
scaled range analysis with power spectral analysis of
simulated fractal Gaussian noise generated with known

These investigators used Hurst rescaled range and powealues ofa, we find that the power law dependence of

spectral analyses to find that over short time intervalspower spectra with exponen&2- 1 applies to simulated

(lags), correlation in voltage fluctuation is persistent. noise fluctuations and is satisfied to within the accuracy

That is, increases in membrane voltage are more likely t@f determination of the slope of the power spectrum.

be followed by increases. However, over long time in-It must be re-emphasized that the slope 2 1 of log

tervals, correlation is anti-persistent. That is, increasepowervs.log frequency is valid only for fractal Gaussian

in membrane voltage are more likely to be followed by noise [13]. However, the possibility cannot be ruled out
voltage decreases. Representative results obtained hlyat deviations from this relationship may also be due to
these investigators are reproduced in Fig. 2. The tophe fact that fluctuations in cell membrane electrical
panel in Fig. 2 shows membrane potential (in mV), re-properties associated with transport of ions through ion
corded under zero current clamp, as a function of time irchannels may not necessarily be of the form of fractal

a murine T-cell line CL1. The plot shows a 5-sec, 500-Gaussian noise.

point series interval sampled at 100 points/sec, taken

from a longer record of 8192 points. Fluctuations in pre Biological Membranes Self-organized and/or

membrane potential appear to be self-similar. That isyighly Tolerant?

portions of the record at short time scales resemble por-

tions of the record at long time scales. The middle panelThis review of fluctuations and fractal noise in biological

of Fig. 2 shows a rescaled range analysis of the memmembranes demonstrates the presence of power law

-36—

Log(R/S)

Log(PS V/1V2)
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forms in cellular membrane phenomena. Among therr ’

are: membra_ne ion chanr]el openings gnd_closings il membrane _

single Ca-activated potassium channel kinetics [21, 22] o T time

neurotransmitter-excited coherent Cavaves in cul- ~ deterministic dependent
dynamics dynamics

tured glial networks [20], fluctuations in polypeptides
and in protein surfaces [8, 15, 30, 34], actin-myocin in-

teraction kinetics [14], and fluctuations in neurotransmit- | zE8 p ,”‘\\
ter-stimulated neural activity [17, 18]. I Qi:/\:w:}

Traditional kinetic and energy level models of ion |
9y ® o060

molecular

channels treat ion channel proteins as if they were stati ion-ion ® - - ---
structures with non-interacting pieces. As emphasize( = = jnteraction .
by Liebovitch [21], dynamic properties of the channel ’?n’};giggf

protein and interactions within and between the channe
protein and the ions passing through it may play an es
sential role in the switching of the channel protein be- ion channel profem'
tween states that are closed and open to the flow of ions
These dynamic properties of ion channel function are
illustrated symbolically in Fig. 3. Figure 3 shows that
am‘?”g these prqpertles, there are Contmuo,us mte_m%lig. 3. Symbolic illustration of dynamic time-dependent properties
motions and continuous changes of state, the interactiongq interactions within and between channel protein and the ions pass-
of the ions themselves and with the channel proteinjng through it. Among these properties are: continuous internal motions
deterministic forces, and time dependent molecularnd continuous changes of state, the interactions of the ions themselves
memory' These dynamic properties are important mand with the channel protein, deterministic forces, and time dependent
how the channel protein functions and how the moleculaf"®lecular memory (from Liebovitch & Krekora, 2000 [25], with per-
properties of channels at the microscopic level manifesf™ss°"-

themselves at the macroscopic level.

state, and that diseases and disorders may represent
guantifiable departures from this critical state. Self-
SELF-ORGANIZED CRITICALITY organized criticality in membrane structure may require
the demonstration of specific symmetry properties. By
S:%yrn.metryis meant that if a structure (0( function) is
that cellular systems evolve into and normally functionSUbJECt.ed tq a certain operatlon_, It remains exactly t.h €
same (invariant) after the operation. One such operation

g‘eg;l:g'gaéfstﬁtee' d Tr:]aen?ig“%etl:e?;?:i?oIr?se;gslr:Sh%(:ji?/ ?éilgis spatialscaling.Invariance with scaling reveals wheth-
y 9 er or not a structure iself-similar.

eleme_nts of the system at all §cales of time and distance: Another step in demonstrating self-organized criti-
That is, the critical state iself-organized.Self- Lo . oS o

. L : S cality in membrane ion transport requires identification
organized criticality explains some ubiquitous patterns f ificuni litv cl Uni litv cl
that exist in nature that we observe plex.Among of specificuniversality classesUniversality classes are
these observations are fractal structure, correlation oﬁ‘he sets of functions that have the same properties. One
events over long times and distances ana the occurren earticular property of a single universality class is a
of large sometigr]nes catastrophic eve,nts o characte‘gower lawform that characterizes fluctuations in mem-
ot large, X P ‘ N brane potential. That is, fluctuations in cellular function
istics of a self-organized critical state are a singte-

versality classand a common property alymmetry _that occur on a tinjet\ scale most directly_ associated with
. e ) ion exchange exhibit long-term correlation governed by

The concept ofelf-organized criticalityintroduced a specific power law

in 1987 by Per Bak and collaborators [1], includes sev- '

eral specific quantitative and measura_ble properties tth“GHLY OPTIMIZED TOLERANCE

reflect the complexity of the self-organized critical state.

Among them are: (1) power law forms of spatial and Another mechanism for generating power law distribu-

temporal probability density distributions; (2) scale in- tions is referred to akighly optimized tolerance.Func-

variance of fluctuations; (3) long-term correlation; (4) tions and structures in biological membrane may be op-

system-wide or universal order, i.e., interactions “link timized through natural selection to provide robust per-

up” over many spatial and time scales; and (5) self-formance despite variable and uncertain physiological

similarity of form and function in the critical state. environments. As suggested by Carlson and Doyle [7],
Complexity observed in cell membranes, as in manypower laws may be due to tradeoffs between yield, cost

other living systems, may indicate that membrane ionof resources, and tolerance to risks. These tradeoffs lead

transport normally operates in the self-organized criticalto highly optimized designs that allow for occasional

The complex properties of cell membranes may sugge
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large events. The characteristic features of highly opti-13
mized tolerance in systems such as ion transport across

biological membranes include (1) high efficiency, per-14

%

formance, and robustness to uncertainties designed
natural selection; (2) extreme sensitivity to design errors;
flaws, and unanticipated perturbations; (3) nongeneric
specialized, structured configurations, (4) power law dis-
tributions of structure and function. Self-organization

and optimized tolerance have in common the charactery;

istic of power laws.
We therefore conclude this review with two experi-

mentally testable hypotheses of fluctuations and fractals.

noise in biological membranes that may help distinguish
between self-organized criticality and highly optimized
tolerance: First, a single power law form of long-term
correlation, that is, having the same temporal scaling
exponent, may imply that processes which affect ex-
change and transport of ions and molecules across bio-
logical membranes belong to a single universality class.

Secondly, a single exponent of similarity or fractal di- 21,

mension of spatial heterogeneity in cellular membrane
structure representing a spatial range in scale, from the

scale of molecular structure to the scale of the whole cell22.

may imply a single common symmetry property in mem-
brane structure which underlies ion transport.

23.
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