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Abstract. Our understanding of cell structure and func-
tion derives from applications of a variety of physical
and life science disciplines, methods and models to an
important physiological process, namely, the exchange
and transport of ions and molecules across biological
membranes. We know that ion transport through mem-
branes arises from a diversity of interrelated and inter-
active physical and chemical phenomena over a wide
range of spatial and temporal scales. Among these phe-
nomena common to all cellular structure and function
include metabolism, kinetics of molecules, chemically
mediated alteration of cell membrane electrical potential,
membrane ion conductance, electrical signal propaga-
tion, and modulation by chemo- and mechanoreceptive
mechanisms. This review focuses on the unique infor-
mation contained in fluctuations in electrical properties
associated with cell membrane ion transport.
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Membrane Electrical Properties Fluctuate

As with many recurring natural events, the resulting
shape and duration of biological membrane electrical
eventsfluctuatein time. The shape (e.g., height, width,
etc.) of each event, as well as each time interval of re-
currence, is never an exact replication of any previous
event. Measured fluctuations may often reflect experi-

mentaluncertaintiesin measured quantities that are usu-
ally assumed to be normally distributed and therefore
characterized by a mean value and a variance defined for
a specific interval of time over which a number of mea-
surements are made. Changes in mean values of these
measured quantities under different experimental condi-
tions are often interpreted in terms of physical models.
Until recently, a key feature of such models islinearity,
characterized by two properties: proportionality and in-
dependence [39]. Underlying the interpretation of living
processes aslinear phenomena is a powerful and persua-
sive axiom of 20th-century medical and life sciences —
the principle ofhomeostasis— articulated by Walter B.
Cannon of Harvard Medical School [6]. Homeostasis
means that the normal operation of a physiological sys-
tem is to reduce fluctuations and to maintain a constant
internal function. Homeostasis implies that fluctuations
occur about a presumed normal steady state that may be
represented (modeled) mathematically as a continuous
function of time. The concept that a mathematical func-
tion and the geometric representation of a line are re-
lated — a seminal idea of the 17th century underlying the
method of calculus — has thus promoted development of
theories oflinear systemsas mathematical representa-
tions (models) of physiological processes. In models of
biological membrane function, homeostasis and linearity
are served and sustained by a linear network or system
with well-defined and identifiable inputs and outputs,
attendant governing processes, and often a mechanism or
center of control [25].

Why Membrane Electrical Properties Fluctuate

Alternatively, fluctuations observed in cell electrical
properties such as membrane potential may be inter-Correspondence to:B. Hoop
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preted as transient responses to a fluctuating environ-
ment over a wide range ofscales.Upon initial inspec-
tion, a time sequence of normal fluctuations in magni-
tude and rate of a measurable quantity appears irregular
and completely random. Byrandom is meant that one
fluctuation is not related to, orindependentof another,
i.e., there is no apparent dependence or correlation
among fluctuations. If, however, a sequence of events is
considered, the fluctuations may look remarkably like
those observed in shorter or longer sequences. That is,
fluctuations on differenttime scalesmay appear to be
self-similar,like the branches of a geometricfractal ob-
ject [27]. In other words, magnitude and rate of events
may fluctuate over many scales, even in the absence of
external stimuli that fluctuate, rather than relaxing to a
homeostatic steady state. This concept — termedho-
meodynamicby West [39] — arises out of recent appli-
cations of nonlinear dynamics to living systems and is
based on the premise that there exists a complex of mul-
tiple states that determines the behavior of healthy
living systems. This may be viewed as a spectrum of
small but superimposed fluctuations in internal mecha-
nisms over a wide range of temporal and spatial scales.
A characteristic of this new paradigm is flexibility of
response andtolerance of error.In this paradigm, the
single scale steady state of homeostasis is replaced by a
multiplicity of nonequilibrium states that arecorrelated
over many scales of time and distance.

Fluctuations in Membrane Electrical Properties
are Correlated

Long-term correlation at the microscopic level is ob-
served in a variety of structures and processes ranging
from DNA sequences [23, 28] to action potentials [36].
Consider, for example, ion channel proteins. These cell
membrane proteins can have different shapes called con-
formational states. There is sufficient thermal energy in
their environment to cause these proteins to switch spon-
taneously between different conformational states [15,
22]. The switching times between these states have frac-
tal properties. That is, kineticrate constantsand related
parameters of models that are used to describe the prob-
ability per unit time that chemically activated membrane
ion channels will change from a closed to an open state
are power law functions of the time resolution used to
determine that probability. A rate constant that describes
ion channel switching serves as an example of one of a
number of classical linear representations of a cellular
process in which a well-defined internal timing mecha-
nism can influence the rate or set the pace. An alterna-
tive model is that of a conditional process consisting of
a sequence of events extending over a time scale which
is long compared with cellular physiological events such
as ion channel switching, but which is short compared to

modulating physical or chemical processes. A fractal re-
lationship is therefore the consequence of physical and
chemical processes acting over short times and distances
at the cellular level, and which are correlated with pro-
cesses acting simultaneously over long times and dis-
tances [25].

Fluctuations in polypeptides, in bilayer lipid cell
membrane proteins, in smooth muscle length and actin-
myocin interaction kinetics, and in neurotransmitter-
excited coherent Ca2+ waves in cultured glial networks
all have spectral features that suggest long-term correla-
tion [8, 14, 20, 30, 34]. Different experimental methods
that alter biological membrane electrical activity have
quite different physiological effects on events, some of
which are quite specific and some that are quite general.
Electrical stimulation may have a general effect on
many, if not all underlying cellular processes, whereas
application of a specific chemical or a specific agonist or
antagonist of a chemical receptor site affects, by defini-
tion and experimental design, a specific chemoreceptor
system and its underlying metabolic pathways [17]. It is
correlation within and between these and other cell
membrane phenomena over a wide range of time and
distance scales that underlies the internal regulation of
ion transport and which implies that fluctuations in mem-
brane electrical properties arefractal noise.

Fluctuations in Membrane Electrical Properties are
Fractal Noise

Fractal sets or series are those series whose characteristic
form or degree of irregularity is the same through a suc-
cession ofscalechanges [2]. Themeasureof a set may
be the values of any physical observable with units of
length, area, volume, voltage, etc. Many naturally oc-
curring phenomena, like tree ring widths, water table
levels, lightning bolt paths, etc., can be characterized by
a fractal (non-integer) dimension rather than by a Eu-
clidean (integer) dimension.

There are fractal sets, series and structures with the
same fractal dimension but with very different features.
For a fractal structure, the measure of the set increases
with an increase in theresolutionof the measuring in-
strument. In this instance, the double log plot of measure
against resolution is always a straight line, the slope of
which is related to the fractal dimension.

A temporal fractal is a process that does not have a
characteristic scale of time, analogous to a geometrical
fractal structure that lacks a characteristic scale of length.
For example, in the case of neural electrical activity that
gives rise to respiration, the time intervals of phrenic
nerve bursts have self-similar bursts of activity, power
law distributions of the duration of intervals, and a power
law form of the Fourier power spectral density. (Note
that we use the wordpowerhere in both its mathematical
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and its physical sense.) This neural activity is correlated
and a large percentage of spectral power is not harmonic
but exhibits a power law relationship. These properties
of temporal correlation, self-similarity, power law distri-
butions of intervals and shapes of the power spectra are
examples of processes with properties of fractalnoise
[17, 22].

Fractal Processes are Error-Tolerant

Why are fractal processes ubiquitous in living phenom-
ena, including the structure and function of membranes?
As suggested above, one reason is that fractal processes
are more tolerant to error than are classical processes.
This possibility has been demonstrated by West and
Deering [40]. Briefly, they consider a simple model of
error response that introduces a random fluctuation into
the parameters of a classical model and of a fractal model
and then by averaging (measuring) over an ensemble of
these fluctuations. West and Deering consider measure-
ment of a time-dependent phenomenon, (e.g., ion chan-
nel switching times) as (1) a classical process repre-
sented by an exponential law, and (2) a fractal process
represented by apower law.Let the variablet represent
the generations of time scales over which measurements
are made. Let the scaling factor orrate constantfor the
classical process consist of the sum of two parts: a con-
stant and arandom part, and that values of measured
quantities are distributed according to a Gaussian prob-
ability density function with zero mean and variances2.
In the case of Gaussian-distributed quantities, carrying
out the average demonstrates that the error grows expo-
nentially as the square oft, [i.e., as exp(s2t2/2)]. In the
same way, West and Deering assume that the index for
the fractal process consists of the sum of two parts: a
constant and arandompart. Again assuming the same
probability density function, the measured fractal quan-
tity is the average over the distribution of time scales, in
which the error grows exponentially as the square of the
natural logarithm oft, [i.e., as exp(s2(lnt)2/2].

The relative error in both the classical and fractal
models fors2 4 0.02 is plotted in Fig. 1. In Fig. 1, it is
clear that ast increases, relative error in the classical
model rises rapidly, compared to the fractal model. For
t > 20, relative error in the classical model is >100,
whereas relative error in the fractal model is only 1.10.
This illustration suggests that a fractal process is essen-
tially unresponsive to error and very tolerant of variabil-
ity in the physiological environment. Therefore, a pro-
cess such as membrane ion conduction, with a diversity
of inputs over a wide range of temporal and spatial scales
and with concomitant sensitivity to error incurred by this
spectrum of inputs could benefit from the error-tolerant
properties of fractals.

Fractal Noise as a Power Law and a Random Walk

Events that recur with constant frequencies appear as
peaks (harmonics) in a power spectrum. On the other
hand,power lawsmay dominate the power spectra of
stochasticprocesses such as noise [33]. A stochastic
process is a process that involves a variate at each mo-
ment oftime,where a variate is a variable that may take
on any of the values of a specified set with a specified
probability. Time intervals between heart beats, between
steps in a walking gait, and between openings and clos-
ings of ion channels are all examples of stochastic pro-
cesses.

Among the many examples of fluctuating natural
processes in space and time that the wordnoise may
invoke, a familiar concept in biology and physics is that
of a random walkof a particle undergoing Brownian
motion (which we’ll call a Brownian particle). A ran-
dom walk with steps of unit length is often modeled as a
Gaussian or normal probability distribution with unit de-
viation (variance). If each event (step) is independent of
another, with unpredictable direction, we refer to the
process asordinary [5, 16].

Consider the position of a Brownian particle that is
moving inD-dimensions (whereD is the integer Euclid-
ean dimension 1, 2, or 3) from one position at timet0 to
another position at a later timet. The position of the
Brownian particle is a self-similar stochastic variable
with parametera 4 1/2. To illustrate the concept of
self-similarity, consider a simplified computational ver-
sion of Brownian motion as aD-dimensional random
walk. Let us denote the position of the random walker at
time t by the stochastic variablev(t) which is a vector
denoting the position of the random walker at timet.
Let us consider two simulations of this random walk: In
one simulation, the random walker takes a step in ran-
dom direction of unit length after every unit of time.

Fig. 1. Comparison of relative error over generationt with random
noise for classical and for fractal scaling (from West & Deering, 1994
[40], with permission).
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In the other simulation, the random walker takes a step in
random direction of two unit lengths after every four
units of time. If we take pictures of the two random
walkers for every time step and play the movie of the two
simulations side by side, we will obviously see the dif-
ference between them. Now let us take one picture of the
two random walks after every four units of time. We
will therefore have no information about the position of
the random walkers for the times in between. Can we
still see the difference between the random walks? What
if the time resolution is so poor that we can only record
the position of the random walker for every 1,000 time
steps? Can we distinguish them now? The fact is, we
cannot distinguish between them by any statistical study
(up to a certain accuracy). In other words, there is no
way to know whether we simulate the positionv(t) of the
random walker by one unit step of each unit time or by
a two unit step of each four units of time. Expressed in
algebraic terms, the stochastic processv(4t) is statisti-
cally indistinguishable from (has the same statistical
properties as) the stochastic process 41/2v(t) [29].

The steps or increments in the position of the
Brownian particle are given by the absolute difference in
the time increment for the two timest andt0 raised to the
powera, and multiplied by a random number. That is,
given the position of the Brownian particle at timet0, the
position at timet is determined by choosing a random
number from a Gaussian distribution. This number is
then multiplied by the absolute value of the time differ-
ence (t − t0) raised to the powera. The result is then
added to the particle’s position at timet0 to obtain its
position at timet. As mentioned above, the exponenta
4 1/2 for ordinary Brownian motion. In other words,
for ordinary Brownian motion, the increment in position
is proportional to the square root of the time difference.
A generalization of this to anya in the range 0 <a < 1
is called fractional orfractal Brownian motion(fBm).
Thederivativeof fractal Brownian motion is called frac-
tal Brownian noise (fBn) or, alternatively,fractal Gaus-
sian noise(fGn). The derivative with respect tot is for-
mally defined as in the differential calculus for continu-
ous functions. For a discrete set of uniformly spaced
points, this definition reduces to taking the differences
between adjacent positions.

Fractal Gaussian noise has a variance that does not
diverge with time and is thereforestationary. In com-
mon usage,stationary means that something is not
changing in time. In the present context, stationary
means only that the moments (e.g., mean, variance) of
the process are defined. Often if the variance in fluctua-
tions of a time series is determined for increasing inter-
vals of time, the value of the variance will increase. That
is, the sample variance may not reach a limiting finite
value but may increase indefinitely with the length of the
time interval used to evaluate it. In the statistical litera-
ture, this is known asheteroscedasticity[10]. A time

series with such moments is said to benonstationary.
For fGn, the average power spectral density or powervs.
frequency varies inversely with frequencyf raised to the
power 2a − 1, where 0 <a < 1. The power spectrum is
thus a power law with exponent 2a − 1. For a 4 1/2,
the exponent is zero, which is to say that all frequency
components are equally represented, from which the
term “white noise” comes, and which is known as ordi-
nary Gaussian noise. For other values ofa, we have
what is known as fractal Gaussian noise. For 0 <a < 0.5,
this noise is negatively correlated and for 0.5 <a < 1, it
is positively correlated.

Models of Fractal Noise and Methods of Analysis

To determine the fractal dimension of a measured se-
quence of biological membrane events, we must first be
able to simulate noise withknownfractal dimension and
to recover that fractal dimension with analytic methods.
Fractal noise may be simulated to an arbitrary resolution
using a number of methods [11, 32, 38]. The relation-
ships betweena and the scaling exponents from log-log
plots of several different methods of analysis are de-
scribed in detail by a number of investigators [18, 24,
31]. Time series of biological membrane events lend
themselves to analysis with fractal methods character-
ized by a single parameter: the exponenta, which is
related to the fractal dimension of the time series. The
magnitude of the exponenta is therefore expected to be
a sensitive indicator of fractal noise. Fractal methods of
analysis include detrended fluctuation analysis [29],
power spectral analysis, autocorrelation, relative disper-
sion analysis, extended range correlation [2], Fano fac-
tor, Allen factor [35, 37], and rescaled range analysis.

Rescaled range analysis is one of the earliest fractal
methods, first described by Hurst in 1950 [19]. Its im-
portance was recognized at once by Feller [12] and sum-
marized in 1983 by Mandelbrot [27] in his classic trea-
tise on the fractal geometry of nature. In brief, the quan-
tity R/S,called the rescaled range, is described by the
power law,R/S∼ ta, wheret is a time interval called the
lag, and the exponenta is called the Hurst exponent.
The Hurst exponent (often designatedH) has the same
physical meaning as the scaling exponenta derived from
detrended fluctuation analysis discussed below and will
be designated asa throughout this text. As mentioned
above, in the absence of long-term statistical depen-
dence,R/Sbecomes asymptotically proportional to the
square root oft (t1/2, i.e., a 4 1/2) for sequences gen-
erated by statistically independent processes with finite
variances. This expression is an example of a power law
that describes a fractal relationship. For positively cor-
related noise with positive values, the possible slopes of
the power law relationship on a log-log plot are bounded
by two extreme values. These values area 4 0.5, for
which the data series is indistinguishable from random

180 B. Hoop and C.-K. Peng: Fluctuations and Fractal Noise



uncorrelated noise, and a value ofa near unity, which
represents high near-neighbor correlation and uniformity
of the signal over all size scales.

In detrended fluctuation analysis (DFA) developed
by Peng et al. [29], a linear relationship between a mea-
sure of fluctuation and the time scale interval on a double
log plot indicates the presence of scaling. That is, the
slope of linear regression of root-mean-square fluctua-
tion F(n) vs.interval lengthn yields a scaling exponenta
which characterizes this scaling. For series of events, the
cumulative (integrated) departure from the mean is di-
vided into intervals of equal lengthn. A least-squares
line representing thetrend in each interval is fitted to the
data. They-coordinates of the straight-line segments are
subtracted from the integrated values in each interval to
detrend the series. The root-mean-square fluctuation
F(n) is then calculated over all interval sizes. Different
values of the exponenta signify different levels of tem-
poral correlation in fluctuation at different scales. For
time series of processes where fluctuations are nega-
tively correlated (“anti-persistent” noise), we have 0 <a
< 0.5. For time series with consecutive values generated
by statistically independent processes with finite vari-
ances,a 4 0.5 (uncorrelated or “white” noise), and 0.5
< a < 1 corresponds to processes where fluctuations in
subsequent values are positively correlated (“persistent”
noise), wherea 4 1 corresponds to power spectral 1/f
noise. Values ofa in the range 1 <a < 1.5, correspond
to integrated negatively correlated (“anti-persistent”)
noise, wherea 4 1.5 correspond to integrated white
(“Brown”) noise [29]. Over the range 0 to 1, and in the
absence of biases [17, 18, 31] the Hurst exponent and the
scaling exponenta are identical.

As mentioned above, many biological processes
consist of a series of discrete recurrent events that fluc-
tuate in time like 1/f noise. In 1/f noise, the power spec-
tral density — the Fourier transform into frequencyf of
the autocorrelation function of the time series — behaves
as a power law, 1/fb, whereb is the power law exponent.
For time series in whichb 4 1, there is no well-defined
temporal scale. That is, the current value of the mea-
sured signal is temporally correlated not only with its
most recent value but also with its long-term history.
The time series of a recurrent biological signal that fluc-
tuates as 1/f noise is thus said to be scale-invariant [2,
11]. Schlesinger and West [32] suggest one explanation
for this is that the biological process in question has
many inputs on different time scales, each of which fluc-
tuate in a random, statistically independent fashion and
which superimpose to yield 1/f noise.

Significance of Fractal Exponent and Comparing
Fractal Methods

There are several practical methods for determining
whether a measured value ofa for a given time series of

events differs significantly from a value of 0.5. One
method is to randomly reorder, i.e., shuffle the seriesn
times and determine the standard deviation in the mean
of a derived from then shuffled series. One may then
employ a test for the significance of the difference be-
tween meana determined from then shuffled series with
the meana determined from the original series. Another
method is to reduce the sampling rate by one-half by
taking every other data point in the series and again
determininga for comparison witha determined from
the original series. Such tests are essential, particularly
when one is working with short time series, as has been
repeatedly emphasized and demonstrated by a number of
investigators [3, 4, 18, 31]. Of equal importance is cor-
rection for biases in measured values ofa introduced by
different methods of fractal analysis. As first demon-
strated by Schepers et al. [31] and stressed by Bassing-
thwaighte and Raymond [3, 4], such corrections to the
fractal exponent depend critically not only on the choice
of analysis, but on the length of the time series to be
analyzed. Lowen and Teich [26] have made compari-
sons of Fano factor and power spectral density analyses
for several different stochastic processes, and Liebovitch
and Yang [24] compare different methods of estimating
the Hurst exponent.

Fractal Analysis of Membrane Electrical Properties

Specific neurotransmitters, e.g., acetylcholine (ACh),
play an important role in membrane chemoreception,
with quantal release from synaptic vesicles taking place
via exocytosis. Spontaneous neural activity may often
consist of periodic bursts with well-defined frequency
and amplitude. However, noise, (i.e., extended bursts
and bursts within bursts) occasionally develops during
stimulation with neural active agents. For example,
Hoop et al. [17] show that during ACh stimulation of a
brainstem preparation at concentrations of 200 to 500
mmoles/L, noise in respiratory-related neural activity ob-
served at uniform time intervals is not statistically inde-
pendent and exhibits positive correlation. These inves-
tigators caution that results derived from very short time
series (64 to 128 events) may not be reliable. Neverthe-
less, results for even short series merit more extensive
investigation, because log-log plots do indeed suggest
power law distributions of this noise.

It is worth emphasizing that the type of fractal noise
observed in a time series depends on the specific experi-
mental observable and the time regime of the observa-
tion. For example, within different time regimes, cell
membrane voltage fluctuations appear to be of the form
of fractional Brownian motion (fBm), whereas the incre-
ments in these fluctuations have characteristics of frac-
tional Gaussian noise (fGn). Churilla et al. [9] were the
first to observe these fractal characteristics of voltage
fluctuations in the membrane of T-lymphocyte cell lines.
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These investigators used Hurst rescaled range and power
spectral analyses to find that over short time intervals
(lags), correlation in voltage fluctuation is persistent.
That is, increases in membrane voltage are more likely to
be followed by increases. However, over long time in-
tervals, correlation is anti-persistent. That is, increases
in membrane voltage are more likely to be followed by
voltage decreases. Representative results obtained by
these investigators are reproduced in Fig. 2. The top
panel in Fig. 2 shows membrane potential (in mV), re-
corded under zero current clamp, as a function of time in
a murine T-cell line CL1. The plot shows a 5-sec, 500-
point series interval sampled at 100 points/sec, taken
from a longer record of 8192 points. Fluctuations in
membrane potential appear to be self-similar. That is,
portions of the record at short time scales resemble por-
tions of the record at long time scales. The middle panel
of Fig. 2 shows a rescaled range analysis of the mem-

brane potential fluctuations. Values of the Hurst expo-
nent determined from a plot of the logarithm of rescaled
range (R/S) vs. logarithm of lag (T) are 0.78 and 0.21 for
brief time intervals (short lags) and long time intervals
(long lags), respectively. The lower panel of Fig. 2
shows a power spectral analysis of the same data. In this
panel, the power spectrum of the differences between
successive values of the membrane potential sampled at
0.01 sec is shown. Corresponding to what is seen in the
rescaled range analysis (middle panel), there are two dis-
tinct regimes. In both regions, the power is approxi-
mately proportional to 1/fb, where f is frequency. A
fractal process, such as fGn, produces such a power law
relationship. The investigators suggest that the existence
of regimes that can be fitted by such power law relation-
ships also indicate that the time correlation of membrane
potential fluctuations in this cell line have fractal prop-
erties. For time series in which the increments are frac-
tional Gaussian noise (fGn), the relationship between the
exponenta determined from rescaled range analysis and
the exponentb determined from the power spectrum isb
4 2a − 1. The investigators point out that deviation
from this relationship may depend on error in determi-
nation ofa andb by the two methods, by the magnitude
of a, as well as by the possibility that fluctuations in
membrane voltage do not have exactly the form of fGn.

In summary, the exponenta determines the degree
of correlation in time series of fluctuations. For 0 <a <
0.5, such correlations are negative. That is, increases in
the values of the time series are more likely to be fol-
lowed by decreases. Whena 4 0.5, there are no corre-
lations. That is, increases in the values of the time series
are just as likely to be followed by increases as by de-
creases. When 0.5 <a < 1, correlations are positive.
That is, increases in the values of the time series are more
likely to be followed by increases. If we compare re-
scaled range analysis with power spectral analysis of
simulated fractal Gaussian noise generated with known
values ofa, we find that the power law dependence of
power spectra with exponent 2a − 1 applies to simulated
noise fluctuations and is satisfied to within the accuracy
of determination of the slope of the power spectrum.
It must be re-emphasized that the slope 2a − 1 of log
powervs.log frequency is valid only for fractal Gaussian
noise [13]. However, the possibility cannot be ruled out
that deviations from this relationship may also be due to
the fact that fluctuations in cell membrane electrical
properties associated with transport of ions through ion
channels may not necessarily be of the form of fractal
Gaussian noise.

Are Biological Membranes Self-organized and/or
Highly Tolerant?

This review of fluctuations and fractal noise in biological
membranes demonstrates the presence of power law

Fig. 2. (Top panel): Membrane potential (in mV)vs. time in seconds,
recorded under zero current clamp, as a function of time in a murine
T-cell line CL1. (Middle panel): Rescaled range analysis of the mem-
brane potential fluctuations shown above. Values of the Hurst exponent
determined from the plot are 0.78 and 0.21 for brief time intervals
(short lags) and long time intervals (long lags), respectively. (Lower
panel): Power spectral analysis of the same data (from Churilla et al.,
1996 [9], with permission).
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forms in cellular membrane phenomena. Among them
are: membrane ion channel openings and closings in
single Ca-activated potassium channel kinetics [21, 22],
neurotransmitter-excited coherent Ca2+ waves in cul-
tured glial networks [20], fluctuations in polypeptides
and in protein surfaces [8, 15, 30, 34], actin-myocin in-
teraction kinetics [14], and fluctuations in neurotransmit-
ter-stimulated neural activity [17, 18].

Traditional kinetic and energy level models of ion
channels treat ion channel proteins as if they were static
structures with non-interacting pieces. As emphasized
by Liebovitch [21], dynamic properties of the channel
protein and interactions within and between the channel
protein and the ions passing through it may play an es-
sential role in the switching of the channel protein be-
tween states that are closed and open to the flow of ions.
These dynamic properties of ion channel function are
illustrated symbolically in Fig. 3. Figure 3 shows that
among these properties, there are continuous internal
motions and continuous changes of state, the interactions
of the ions themselves and with the channel protein,
deterministic forces, and time dependent molecular
memory. These dynamic properties are important in
how the channel protein functions and how the molecular
properties of channels at the microscopic level manifest
themselves at the macroscopic level.

SELF-ORGANIZED CRITICALITY

The complex properties of cell membranes may suggest
that cellular systems evolve into and normally function
in a critical state. The critical state is established solely
because of the dynamic interactions among individual
elements of the system at all scales of time and distance.
That is, the critical state isself-organized.Self-
organized criticality explains some ubiquitous patterns
that exist in nature that we observe ascomplex.Among
these observations are fractal structure, correlation of
events over long times and distances, and the occurrence
of large, sometimes catastrophic events. Two character-
istics of a self-organized critical state are a singleuni-
versality classand a common property ofsymmetry.

The concept ofself-organized criticality,introduced
in 1987 by Per Bak and collaborators [1], includes sev-
eral specific quantitative and measurable properties that
reflect the complexity of the self-organized critical state.
Among them are: (1) power law forms of spatial and
temporal probability density distributions; (2) scale in-
variance of fluctuations; (3) long-term correlation; (4)
system-wide or universal order, i.e., interactions “link
up” over many spatial and time scales; and (5) self-
similarity of form and function in the critical state.

Complexity observed in cell membranes, as in many
other living systems, may indicate that membrane ion
transport normally operates in the self-organized critical

state, and that diseases and disorders may represent
quantifiable departures from this critical state. Self-
organized criticality in membrane structure may require
the demonstration of specific symmetry properties. By
symmetryis meant that if a structure (or function) is
subjected to a certain operation, it remains exactly the
same (invariant) after the operation. One such operation
is spatialscaling.Invariance with scaling reveals wheth-
er or not a structure isself-similar.

Another step in demonstrating self-organized criti-
cality in membrane ion transport requires identification
of specificuniversality classes.Universality classes are
the sets of functions that have the same properties. One
particular property of a single universality class is a
power lawform that characterizes fluctuations in mem-
brane potential. That is, fluctuations in cellular function
that occur on a time scale most directly associated with
ion exchange exhibit long-term correlation governed by
a specific power law.

HIGHLY OPTIMIZED TOLERANCE

Another mechanism for generating power law distribu-
tions is referred to ashighly optimized tolerance.Func-
tions and structures in biological membrane may be op-
timized through natural selection to provide robust per-
formance despite variable and uncertain physiological
environments. As suggested by Carlson and Doyle [7],
power laws may be due to tradeoffs between yield, cost
of resources, and tolerance to risks. These tradeoffs lead
to highly optimized designs that allow for occasional

Fig. 3. Symbolic illustration of dynamic time-dependent properties
and interactions within and between channel protein and the ions pass-
ing through it. Among these properties are: continuous internal motions
and continuous changes of state, the interactions of the ions themselves
and with the channel protein, deterministic forces, and time dependent
molecular memory (from Liebovitch & Krekora, 2000 [25], with per-
mission).
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large events. The characteristic features of highly opti-
mized tolerance in systems such as ion transport across
biological membranes include (1) high efficiency, per-
formance, and robustness to uncertainties designed by
natural selection; (2) extreme sensitivity to design errors,
flaws, and unanticipated perturbations; (3) nongeneric,
specialized, structured configurations, (4) power law dis-
tributions of structure and function. Self-organization
and optimized tolerance have in common the character-
istic of power laws.

We therefore conclude this review with two experi-
mentally testable hypotheses of fluctuations and fractal
noise in biological membranes that may help distinguish
between self-organized criticality and highly optimized
tolerance: First, a single power law form of long-term
correlation, that is, having the same temporal scaling
exponent, may imply that processes which affect ex-
change and transport of ions and molecules across bio-
logical membranes belong to a single universality class.
Secondly, a single exponent of similarity or fractal di-
mension of spatial heterogeneity in cellular membrane
structure representing a spatial range in scale, from the
scale of molecular structure to the scale of the whole cell,
may imply a single common symmetry property in mem-
brane structure which underlies ion transport.
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