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Background: The diagnosis of sleep-disordered breathing (SDB) and evaluation of sleep quality in the
pediatric population is dependent on resource intensive attended polysomnography. An ECG-derived car-
diopulmonary coupling sleep spectrogram (CPC) analysis previously described in adults can provide
information about the severity of SDB and coupled interactions of sleep modulated autonomic drive
and respiration. We hypothesized that CPC algorithm-derived metrics will correlate with nasal pres-
sure-based apnea–hypopnea scoring in pediatric population.
Methods: A total of 63 subjects (mean 6.2 years; range 2–12 years) were analyzed by both CPC and con-
ventional nasal flow and desaturation scoring obtained during cardiorespiratory recordings. The charac-
teristics of CPC indices and correlation with conventional SDB scoring were computed.
Results: High-frequency coupling (HFC), the CPC marker of stable sleep state, is reduced in proportion to
SDB. The HFC durations are negatively correlated with the nasal flow-derived respiratory disturbance
index (RDI), a CPC-derived RDI (CPC-RDI), and the 3% oxygen desaturation index (correlation coefficient
�0.60, �0.78 and �0.54, respectively). CPC-RDI has a strong positive correlation with the conventional
nasal-flow RDI (correlation coefficient 0.70). In this group with a mean nasal-flow RDI 36.1/h, the per-
centage of correct CPC diagnosis was 85.7% in total, 40% in the non-severe group (10 subjects, RDI
<20/h) and 94.3% in the severe group (53 subjects, RDI >20/h).
Conclusions: ECG-derived sleep spectrogram metrics are correlated with nasal flow-derived respiratory
abnormality in pediatric SDB. In suitable clinical contexts, this method may have screening utility and
possibly allow tracking of treatment effects, specifically in the children with severe SDB.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Pediatric sleep-disordered breathing (SDB) has been associated
with attention and behavioral disorders, learning difficulty, and
executive dysfunction. It is reported that 1–3% of children have
clinically significant SDB, and there is a 3–12% habitual snoring
prevalence in the general pediatric population [1–3]. The diagnosis
of pediatric SDB typically depends on attended polysomnography
(PSG), making it difficult to rapidly expand services both in devel-
oped and developing countries. Even after diagnosis, objectively
tracking effects of treatment face similar challenges. Simplified,
cheaper and less resource-intensive methods for diagnosis and
tracking of pediatric SDB could be clinically useful.

ECG-derived cardiopulmonary coupling (CPC) analysis is a tech-
nique developed in adults that shows usefulness to evaluate sleep
ll rights reserved.

rs Center, Meitan General
: +86 13811383533.
o2009@sina.com (D. Guo).
quality and phenotype SDB [4,5]. Autonomic nervous system
dynamics as measured by heart rate variability and respiration,
have characteristic patterns that vary according to sleep depth
and type [6,7]. Low frequency periodic cycling of heart rate [8–
12] is a typical feature of SDB, sometimes called ‘‘cyclic variation
in heart rate.’’ A number of methods that primarily use R–R (inter-
beat) interval information to detect SDB from the surface ECG have
been proposed [13–20]. One limitation of this approach is that
individuals with very low heart rate variability may not show clear
R–R variability. Independent of R–R variability, a surrogate respira-
tion signal referred to as ECG-derived respiration (EDR) can be ex-
tracted from the ECG [21,22]. The EDR technique is based on the
observation that the positions of the ECG electrodes on the chest
surface move relative to the heart, and transthoracic impedance
varies as the lungs fill and empty. In essence, the R-wave ampli-
tude varies as tidal volume changes. A detailed description of this
technique, as well the source code for the algorithm, is available
online (http://www.physionet.org/physiotools/edr/).
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The CPC technique combines R–R and EDR information to gen-
erate ‘‘coupling’’ metrics – high, low and very low frequency cou-
pling. NREM sleep shows predominantly a bimodal characteristic,
minimally correlated with conventional NREM sleep stages but
reasonably well correlated with visually determined cyclic alter-
nating pattern (CAP)/non-CAP in adults [4].

Healthy subjects show a predominance of high-frequency cou-
pling, while those with untreated SDB show a predominance of
low frequency coupling. We hypothesized that CPC algorithm-
derived metrics will correlate with nasal pressure-based apnea–
hypopnea scoring.

The purpose of the present study is, therefore, (1) to evaluate
the spectrographic characteristics of cardiopulmonary coupling in
pediatric SDB and (2) to assess correlations of a CPC-derived respi-
ratory disturbance index (CPC-RDI) and conventional respiratory
flow recording in pediatrics.

2. Methods

2.1. Database

Clinically-indicated (ordered for suspected sleep apnea) pediat-
ric sleep studies were used. From 246 attended sleep cardiorespi-
ratory recordings collected in 2007 by the Sleep Disorders Center,
Meitan General Hospital, Beijing, China, 63 were selected. All sub-
jects were outpatients with a primary complaint of daytime sleep-
iness or behavioral problems, snoring or mouth-open breathing
during sleep. The subjects analyzed here were selected to satisfy
all of the following criteria: 2–12 years old, at least 6 h of arti-
fact-free respiration recording, at least 80% of the ECG data of qual-
ity to perform CPC analysis, a completed pediatric life quality
questionnaire OSA-18 [23]. Most subjects (about 60%) were ex-
cluded because of uncompleted questionnaire and bad airflow sig-
nal quality, as the children tended to remove the nasal pressure
cannula during the full-night examination.

2.2. Cardiorespiratory polysomnography

A single night recording was performed using the Hypno PTT
system (Tyco Healthcare, USA), which includes nasal pressure
recording (by nasal cannula), oronasal thermistor, ECG, finger pulse
Table 1
OSA-18 questionnaire. The questionnaire includes 18 items grouped in five domains,
where items are scored in an ordinal 7-point classification (1 – none of the time, 2 –
hardly any of the time, 3 – a little of the time, 4 – some of the time, 5 – a good bit of
the time, 6 – most of the time, 7 – all of the time). The total OSA-18 score may be
between 18 and 126. Parents rate symptom frequency during the previous 4 weeks.

1. Sleep disturbance Loud snoring
Breath holding spells or pauses in breathing at night
Choking or gasping sounds while asleep
Restless sleep or frequent awakenings from sleep

2. Physical symptoms Mouth breathing because of nasal obstruction
Frequent colds or upper respiratory infections
Nasal discharge or runny nose
Difficulty swallowing foods

3. Emotional distress Mood swings or temper tantrums
Aggressive or hyperactive behavior
Discipline problems

4. Daytime function Excessive daytime drowsiness or sleepiness
Poor attention span or concentration
Difficulty getting out of bed in the morning

5. Caregiver concerns Worrying about child’s general health because of
above problems
Concern that child is not getting enough air at night
Inability to perform daily activities because of above
problems
Frustration because of above problems
oximetry, pulse transit time, and body position. The nasal cannula
used was an oxygen absorbing tube (size 12, manufactured by Yue
Liang Ltd., Suzhou, Jiangsu province, China). Another lead of ECG
for cardiopulmonary coupling analysis was simultaneously re-
corded by a Holter device (DynaDx Corporation, USA). The Pediat-
ric Life Quality questionnaire OSA-18 [23] was completed by the
subject’s caregiver before he/she began the sleep study (Table 1).
The sleep period was estimated from behavioral measures of sleep.

2.3. Respiratory event scoring

Apneas and hypopneas were scored using a nasal pressure can-
nula and a thermistor. Respiratory events were required to be at
least two respiratory cycles in duration. An apnea was defined as
an absence of airflow in the nasal cannula and a simultaneous
reduction in the oral thermistor signal to <10% of baseline (when
nasal flow was lost, the thermistor signal was used). An hypopnea
was defined as any evident (typically >30%) reduction in amplitude
of the nasal pressure signal, or flow limited breaths, abruptly ter-
minating with a return to a rebounded or sinusoidal flow profile
or a large recovery breath. Hypopneas were scored with and with-
out desaturation (Fig. 1). The apnea–hypopnea index regardless of
desaturation per hour of sleep was called the respiratory distur-
bance index (RDI). A 3% oxygen desaturation index was computed
by the Hypno PTT software. To diagnose a subject with SDB, a nasal
flow RDI P5/h of estimated sleep is required.

2.4. Pulse transit time arousal index

The Hypno PTT software computed an arousal index based on the
pulse transit time (PTT). PTT is the time taken for the arterial pres-
sure wave to travel from the aortic valve to the periphery [24]. It is
measured by calculating time from the ECG R-wave to the pulse
wave recorded at the finger via the plethysmographic signal ob-
tained by the oximeter. The PTT is affected by many factors including
blood pressure. When an arousal occurs during sleep, sympathetic
tone is transiently elevated, the blood pressure arises, and PTT is
shortened. The PTT-arousal index is generated by computing the
minima of the PTT per hour (set by the Hypno PTT software).

2.5. Cardiopulmonary coupling analysis

Details of the method have been published [4]. To estimate the
degree of cardiopulmonary coupling between heart rate and respira-
tion, we employed Fourier-based techniques to analyze the R–R
interval series and its associated EDR signal. Two key factors need
to be considered in evaluating the strength of the coupling between
these two signals. (1) If, at a given frequency, both signals have rela-
tively large oscillation amplitudes, then it is likely that these two sig-
nals are coupled with each other. This effect can be measured by
computing the cross-spectral power, i.e., the product of the powers
of the two individual signals at a given frequency. (2) If the oscilla-
tions of these two signals are synchronized with each other (i.e., they
maintain a constant phase relationship), this effect can be measured
by computing the coherence of these signals. We used the product of
the coherence and the cross-spectral power to weigh these two ef-
fects in order to quantify the degree of the cardiopulmonary
coupling.

Using a single-lead ECG, an automated beat detection algorithm
[25,26] was used to detect beats and classify them as either normal
or ectopic, based on their morphology and timing. In addition, ampli-
tude variations in the QRS complex due to shifts in the cardiac elec-
trical axis relative to the electrodes during respiration and changes
in thoracic impedance were determined. These fluctuations in the
mean cardiac electrical axis correlate with phasic changes in the
respiratory cycle. From these amplitude variations, a surrogate



Fig. 1. Cardiorespiratory recording. A two-min Hypno-PTT snapshot showing respiratory events, PTT arousals, and a desaturation event. The x-axis is the time axis during
recording. THM: thoracic movement, FLW: nasal pressure-based flow, PTT: pulse transit time, PT1: PTT signal filtered by low pass filter, HRT: heart rate.
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EDR was obtained as previously described [21,22]. A time series of
normal-to-normal sinus (N–N) intervals and the time series of the
EDR associated with these N–N intervals was then extracted from
the R–R interval time series. The resulting N–N interval series and
its associated EDR signal were then resampled at 2 Hz. using cubic
spline interpolation. The cross-spectral power and coherence of
these two signals were calculated over a 1024-sample (8.5-min)
window using the fast Fourier transform. For each 1024 window,
the product of the coherence and cross-spectral power was used to
calculate the ratio of the sum of the two maximal coherent cross-
power peaks in the low-frequency band (0.01–0.1 Hz) to the sum
of the two maximal peaks in the high-frequency band (0.1–0.4 Hz).
The cardiopulmonary coupling spectrum is generated based on this
ratio. A preponderance of power in the low-frequency band is asso-
ciated with periodic respiration during SDB [10], while excess power
in the high-frequency band is associated with physiologic respira-
tory sinus arrhythmia due to increased vagal tone that appears in
deep sleep [27]. Wake and unfragmented REM sleep shows coupling
in the very low frequency (0.001–0.01 Hz) range. Fragmented REM
sleep shows low frequency (0.01–0.1 Hz) coupling [4].

A CPC analysis derived RDI (CPC-RDI) was generated, using the
duration and mean frequency of the low frequency coupling (LFC)
periods, and expressed as number/h by multiplying two quantities:
(1) the average portion of time (minutes per hour) that a subject’s
sleep was spent in the low frequency coupling state and (2) the
average frequency (cycles per min) of low frequency coupling.
2.6. Statistical methods

Summary statistics were tabulated as means and standard devi-
ation. Spearman’s correlation coefficients were computed for nasal
pressure, PTT, OSA-18 score and CPC derived metrics. A receiver
operating characteristic (ROC) curve was generated to show the
relationship between CPC-RDI and the nasal-flow RDI. Bland and
Altman graph was generated to compare the difference between
nasal-flow RDI and CPC-RDI.
3. Results

3.1. Subject clinical characteristics

The 63 subjects included 22 females and 41 males. The mean
age was 6.22 years old (SD 2.50; range 2–12 years). The mean
OSA-18 score was 50.2 (SD 15.7; range 13–92).
3.2. CPC and cardiorespiratory measures

The conventional respiration scoring summary was a mean RDI
of 36.11 ± 22.3/h of sleep. The 3% oxygen desaturation index was
4.7 ± 8.9/h of sleep, the lowest saturation was 90.4 ± 7.1%, and
the mean saturation for the whole night was 98.4 ± 1.2%. The CPC
generated RDI was 31.2 ± 18.25/h. The percentage of sleep detected
as high-frequency coupling (HFC), low frequency coupling (LFC),
and very low frequency coupling (VLFC) was 52.6 ± 17.6%,
25.3 ± 14.6%, and 20.8 ± 7.1%, respectively, with 1% classified as
indeterminate. The PTT-arousal index was 59.1 ± 18.7%.

Examples of ECG-derived sleep spectrograms across a range of
severities of sleep apnea are shown in Figs. 2–4.
3.3. Correlation and agreement between CPC and cardiorespiratory
metrics

High-frequency coupling (a marker of stable sleep) duration of
the 63 subjects was negatively correlated with the nasal-flow
RDI and the desaturation index as shown in Table 2. The CPC-RDI
was positively correlated with the conventional nasal-flow RDI
(correlation coefficient 0.70). Conventional nasal-flow RDI, desatu-
ration index, and the CPC metrics did not show statistically signif-
icant correlations with the Hypno-PTT auto-detected PTT-arousal
index or the OSA-18 questionnaire score. Since only one subject
had normal respiration in the current database, the subjects were
separated into two groups to assess agreement between methods,
a nasal flow RDI >20/h (severe) or nasal flow RDI 620/h (non-se-
vere). Based on a calculation of the ROC (Fig. A1), the CPC-RDI
boundary to separate severity and non-severity was found to be
15/h. The percentage of correct CPC diagnosis was 85.7% in total,
40% in the non-severe group (10 subjects) and 94.3% in the severe
group (53 subjects). As expected, the Bland and Altman plot show
relatively big inter-method differences (Fig. 5). The reason is ex-
plained in Section 4.
4. Discussion

The key findings of this study are that (1) CPC analysis may pro-
vide useful surrogates of conventional respiratory polysomno-
graphic indices in severe pediatric patients (specifically, reduced
high and increased low frequency coupling were the spectro-
graphic hallmarks of pediatric sleep apnea), (2) different metrics
may be sampling complementary elements of sleep physiology,



Fig. 2. Minimal to mild sleep apnea. CPC analysis in a 3-year old boy, with nasal-flow RDI of 8.2/h of sleep. Note that nearly 70% of the recording is spent in high-frequency
coupling (upper ‘‘mountain range’’), occurring in discrete periods across the night. There are spontaneous switches between high and low frequency coupling periods, a
pattern identical to that seen in healthy adults [4].

Fig. 3. Severe sleep apnea. CPC analysis in a 2-year old male, with a nasal-flow RDI of 57.1/h of sleep. Note the visually apparent reduction of high-frequency coupling (HFC)
compared to the example shown in Fig. 2.

Fig. 4. Very severe sleep apnea. CPC analysis in a 7-year old male, with nasal-flow RDI 126.1/h. Note minimal amounts of high-frequency coupling (HFC).

D. Guo et al. / Sleep Medicine 12 (2011) 384–389 387



Table 2
Correlations between ECG-derived CPC measures and conventional cardiorespiratory indices. All indices were calculated in unit times per hour. The asterisk indicates that the
correlation is significant at the 0.01 level. The CPC-RDI shows strong positive correlations with the manually scored nasal flow-RDI, and desaturation index, and a strong negative
correlation with HFC, marker of stable sleep. There were no correlations found between the PTT-arousal index and other indexes, or with the OSA-18 questionnaire score.

LFC HFC CPC-RDI Nasal-flow RDI ODI PTT-arousal index OSA-18

LFC 1 �0.90* 0.92* 0.61* 0.58* 0.15 �0.13
HFC �0.91* 1 �0.89* �0.60* �0.54* �0.14 0.05
CPC-RDI 0.92* �0.89* 1 0.70* 0.70* 0.19 �0.03
Nasal-flow RDI 0.61* �0.60* 0.70* 1 0.67* 0.05 0.19
ODI 0.58* �0.54* 0.70* 0.67* 1 0.09 0.11
PTT-arousal index 0.15 �0.14 0.19 0.05 0.09 1 0.00
OSA-18 �0.13 0.05 �0.03 0.19 0.11 0.00 1

CPC: cardiopulmonary coupling, RDI: respiratory disturbance index, LFC: low-frequency coupling, HFC: high-frequency coupling, ODI: 3% oxygen desaturation index, PTT:
pulse transit time, OSA-18: obstructive sleep apnea questionnaire.

Fig. 5. Bland and Altman plot. It is expected that CPC-RDI and nasal-flow RDI will show inter-method differences. For example, to score a flow reduction as hypopnea (part of
nasal-flow RDI), typically 30% or greater flow reduction is required. However, a flow reduction of less than 30% may also cause robust heart rate acceleration and deceleration,
which will influence the CPC-RDI directly.
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(3) no metric correlated with clinical symptoms as assessed by the
questionnaire OSA-18.

Sleep fragmenting stimuli induce an increase in low frequency
oscillations of multiple physiological traces during sleep [28,29].
These oscillations are seen in the form of cyclic variation in heart
rate, tidal volume fluctuations, blood pressure surges, and phasic
EEG complexes called cyclic alternating pattern [28–30]. Such
dominance of low frequency oscillations is seen most readily in
SDB syndromes in adults and children [10], but also in heart failure
[12], insomnia [31], in response to auditory stimuli during sleep,
and fibromyalgia [32].

In SDB patients, respiratory abnormality drives the majority of
these low frequency oscillations, resulting in significant correla-
tions (correlation coefficient 0.7) of nasal flow based RDI and the
CPC-derived RDI. Thus, in the suitable clinical context, such as
when there is a high clinical probability of sleep apnea (e.g., snor-
ing + poor school performance) the CPC-RDI may be a useful surro-
gate of a conventional RDI. It might be helpful for screening
subjects at risk for severe sleep apnea since it has a high sensitivity
for this subgroup and its implementation is very simple compared
to conventional PSG-based measures. While the utility of the CPC-
RDI alone in the final diagnosis of SDB is likely limited, adding
oximetry could improve detection characteristics. Once the
diagnosis is established, the ease of obtaining the ECG increases
attractiveness as a method to track effects of treatment, such as
tonsillectomy or weight loss. Figs. 2–4 show the graphical repre-
sentation of the ECG-spectrogram, which can also generate useful
metrics such as the proportion of the sleep period in high-
frequency coupling – this may be expected to increase as disease
is overcome and healthy sleep patterns dominate.

It is expected that CPC-RDI and nasal-flow RDI will show inter-
method differences. Since the CPC algorithm is not based on respi-
ratory flow change but on the respiration related oscillation in
heart rate, it is expected that differences will occur. For example,
to score a flow reduction as hypopnea (part of nasal-flow RDI), typ-
ically 30% or greater flow reduction is required. Buta flow reduc-
tion of less than 30% may also cause robust heart rate
acceleration and deceleration, which will influence the CPC-RDI di-
rectly. CPC cannot directly replace flow measurements, but may
have a role in screening and tracking, as ECG recordings are
convenient.

Different types of measurements may reflect complementary
aspects of sleep physiology and pathology. For example, in our data
set with abnormal respiration, the PTT-arousal index did not corre-
late with CPC or nasal pressure-based RDI estimates. Nevertheless,
such measurements may have utility in tracking therapy and clin-
ical status over time. The lack of correlation between any of the
polysomnographic measures with questionnaire-based symptoms
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may reflect the limitations of questionnaires, multiple etiologies of
similar clinical symptoms, complex host–environment interac-
tions, accuracy of scoring methods, and difficulty in determining
the most important disease effects.

There are important limitations of the ECG-based CPC approach.
Sleep onset is not accurately detected; adding actigraphy could
help overcome this limitation. Periods of high-frequency coupling
may still show obstructive hypoventilation, a common disease pat-
tern in children. Any fragmenting stimulus will decrease high-fre-
quency coupling and increase the computed CPC-RDI; thus, the
method is not disease specific. The algorithm will not work in
the presence of cardiac arrhythmias such as very frequent ventric-
ular ectopy or bigeminy or continuous atrial fibrillation; however,
these are not common problems in children. The current database
is a group with severe sleep apnea, so the results cannot be readily
extrapolated to those with milder disease.

In summary, we describe potential utility of an ECG-derived
method to assess sleep physiology in severe pediatric SDB. The
technique may have potential advantages in screening for severe
SDB, tracking treatment effects, and could enhance diagnostic ef-
forts when used along with other commonly acquired signals dur-
ing diagnostic polysomnography.
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