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Abstract

We discuss multiple-time scale properties of neurophysiological control mechanisms, using
heart rate and gait regulation as model systems. We find that scaling exponents can be used
as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties
may provide a novel early waming system in subjects with a variety of pathologies including
those at high risk of sudden death. © Published by 1998 Elsevier Science B.V. All rights
reserved.

1. Introduction

Scale-invariant properties in biological systems have received much attention recently
[1,2]. The absence of characteristic temporal (or spatial) scales may confer important
biological advantages, related to adaptability of response [2,3]. In this paper, we present
some recent progress in applying scale-invariant (fractal) analysis to physiological time
series. We will concentrate on the output of two model physiological systems: (1)
human heartbeat time series under neuroautonomic control; and (2) human gait time
series under the control of central nervous system.

2. Human heartbeat dynamics

Clinicians often describe the normal activity of the heart as “regular sinus rhythm”.
But, in fact, cardiac interbeat intervals normally fluctuate in a complex, apparently
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Fig. 1. Representative complex physiological fluctuations. Cardiac interbeat interval time series of 2000 beats
from (a) a healthy subject, (b) a subject with congestive heart failure (CHF) and (c) a sudden cardiac death
subject with ventricular fibrillation (VF).

erratic manner [2,4] (Fig. 1). This highly irregular behavior has recently motivated
researchers [5,6] to apply time-series analyses that derive from statistical physics, es-
pecially methods for the study of critical phenomena where fluctuations at all length
(time) scales occur. These studies show that under healthy conditions, interbeat in-
terval time series exhibit long-range power-law correlations reminiscent of physical
systems near a critical point [7,8]. Furthermore, certain disease states may be ac-
companied by alterations in this scale-invariant (fractal) correlation property. Here we
explore the potential utility of such scaling alterations in the detection of pathological
states.

Our analyses are based on the beat-to-beat heart-rate fluctuations of digitized electro-
cardiograms recorded with an ambulatory (Holter) monitor. The time series obtained
by plotting the sequential intervals between beat i and beat / + 1, denoted by B(i),
typically reveals a complex type of variability (Fig. 1). The mechanism underlying
such fluctuations appears to be related primarily to countervailing neuroautonomic in-
puts. Parasympathetic stimulation decreases the firing rate of pacemaker cells in the
heart’s sinus node. Sympathetic stimulation has the opposite effect. The nonlinear inter-
action (competition) between the two branches of the autonomic nervous system is the
postulated mechanism for the type of erratic heart-rate variability recorded in healthy
subjects [4,9].
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2.1. Detrended fluctuation analysis (DFA)

Difficulties of quantitatively analyzing physiological time series arise mainly from
their nonstationarity and sometimes short data length. We have developed a scaling
analysis, called detrended fluctuation analysis (DFA) [10,11], which takes these fac-
tors into account. DFA is a modified root-mean-square analysis of a random walk
based on the following concept: a stationary time series with long-range correlations
can be integrated, i.e., form an accumulated sum, to form a self-similar process. There-
fore, measurement of the self-similarity scaling exponent of the integrated series can
tell us the long-range correlation properties of the original time series. In short, we
integrate the original time series once; then we determine the fluctuations F(n) of the
integrated signal around the best linear fit in a time window of size n. The slope
of the line relating log F(n) to logn determines the scaling exponent (self-similarity
parameter) o. The DFA method has been validated on control time series that con-
sist of long-range correlations with the superposition of a non-stationary external trend
[10]. It has also been successfully applied to detect long-range correlations in highly
heterogencous DNA sequences [10,12,13], and other complex physiological signals
[11,14,15].

Fig. 2 compares the DFA analysis of representative 24 h interbeat interval time se-
ries of a healthy subject and a patient with congestive heart failure (CHF). Notice
that for large time scales (asymptotic behavior), the healthy subject interbeat interval
time series shows almost perfect power-law scaling over two decades (20 <n < 10000)
with @ = 1 (i.e,, 1/f noise) while o =~ 1.3 (closer to Brownian noise) for the CHF
patient.
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Fig. 2. Plot of log F(n) versus logn for two 24 h interbeat interval time series. The circles are from a healthy
subject while the triangles are from a subject with congestive heart failure. Arrows indicate “crossover” points
in scaling, from Ref. [11].
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2.2. Short- and long-time scaling properties

We note that for short time scales, there is an apparent crossover exhibited for the
scaling behavior of some data sets (arrows in Fig. 2). For the healthy subject, the «
exponent estimated from very small n (< 10 beats) is larger than that calculated from
large n (> 10 beats). This is probably due to the fact that on very short time scales
(a few beats to ten beats), the physiologic interbeat interval fluctuation is dominated
by the relatively smooth heartbeat oscillation associated with respiration, thus giving
rise to a large « value. For longer scales, the interbeat fluctuation, reflecting the in-
trinsic dynamics of a complex system, approaches that of 1/f behavior as previously
noted [5,16]. In contrast, the CHF data set shows a very different crossover pattern
(Fig. 2). For very short time scales, the fluctuation is quite random (close to white
noise, & ~ 0.5). As the time scale becomes larger, the fluctuation becomes smoother
(asymptotically approaching Brownian noise, o ~ 1.5).

2.3. Practical utilities

Several recent studies have demonstrated that scaling exponents (both short- and
long-time scales) might be useful clinical indicators for detecting pathological dynam-
ics. In particular, these studies revealed:

(1) For a group of 12 healthy adults without clinical evidence of heart disease and a
group of 15 adults with severe heart failure, the long-range exponents (for time scales
102 ~ 10* beats) are significantly different. For the group of healthy cardiac interbeat
interval time series (mean value = S.D.): « = 1.00£0.11. This result is consistent with
previous reports of 1/f fluctuations in healthy heart rate (by spectral analysis) [3,16].
The pathologic group shows a significant (p < 0.01 by Student’s z-test) deviation
of the long-range correlation exponent, & = 1.24 + 0.22, from normal. Of interest,
some of the heart failure subjects show an o exponent very close to 1.5 (Brownian
noise), indicating random walk-like fluctuations. The group-averaged exponent z is less
than 1.5 for the heart failure patients, suggesting that pathologic dynamics may only
transiently operate in the random-walk regime or may only approach this extreme state
as a limiting case.

(2) The above observation of a differential crossover pattern for healthy versus patho-
logic data motivated us to extract two parameters from each data set by fitting the scal-
ing exponent o over two different time scales: one short, the other long. To be more
precise, for each data set we calculated an exponent «; by making a least-squares fit
of log F(n) versus logn for 4<n<16. Similarly, an exponent », was obtained from
16 <n<64. Since these two exponents are not extracted from the asymptotic region,
relatively short data sets are sufficient, thereby making this technique applicable to
“real-world” clinical data.

We applied this quantitative fluctuation analysis to the two different groups of sub-
jects mentioned above to measure the two scaling exponents &; and ap [11]. All data
set records were divided into multiple sub-sets (each with 8192 beats ~ 2h) and
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Fig. 3. Scatter plot of scaling exponents o) versus x; for (a) the healthy subjects and subjects with congestive
heart failure, (b) young and elderly healthy subjects. Note good separation between healthy and heart disease
subjects in (a), with clustering of points in two distinct “‘clouds.” Similarly, there is good separation between
young and elderly subjects in (b).

the two exponents were calculated for each subset. For healthy subjects, we find that
oy = 1.20 £ 0.18 (mean = S.D.) and a, = 1.00 £ 0.12. For the group of congestive
heart failure subjects, we find that ) = 0.80 £ 0.26 and x; = 1.13 £ 0.22, both signifi-
cantly (p < 0.0001 for both «; and o) different from normal. Furthermore, we show
in Fig. 3a that fairly good discrimination between these two groups can be achieved
by using these two scaling exponents. '

(3) Based on the hypothesis that there is a region of scaling behavior (in Fig. 3a)
over which the normal (healthy) cardiac control operates, we have recently found an-
other promising application of DFA in analyzing data sets from Framingham heart study
— a prospective, population-based study [17]. The primary group of interest was individ-
uals with congestive heart failure (CHF); 28 CHF cases and 41 sex- and age-matched
healthy control cases were analyzed by our scaling analysis. Briefly, using Holter
monitor data (approximately 2 h) from each subject of the Framingham study, we
assigned an index (range from 0 to 1) to each individual by estimating the probabil-
ity that this particular heartbeat time series was operating in the appropriate region in
Fig. 3a (normal versus pathologic). Does this measure add independent information
to conventional measures? In comparison with other 10 time and frequency measures,
we found that the DFA index may carry prognostic information about mortality not
extractable from these traditional methods of heart rate variability analysis [17].

(4) Similar analysis was applied to study the effect of physiologic aging. Ten young
(21-34 yr) and ten elderly (68-81yr) healthy subjects underwent 2 h of continuous
supine resting ECG recording. In healthy young subjects, no obvious crossover be-
haviour was observed (a; =~ a;), scaling exponent « is close to a value of 1.0. In the
group of healthy elderly subjects, the interbeat interval time series also had two scaling

! Not all subjects in our preliminary study show an obvious crossover in their scaling behavior.
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regions. Over the short range, interbeat interval fluctuations resembled a random walk
process (Brownian noise, a = 1.5), whereas over the longer range they resembled white
noise (o = 0.5). Short- (%) and long-range (a,) exponents were significantly different
in the elderly subjects compared with the young (see Fig. 3b) [18].

3. The dynamics of human walking

Human gait is a complex process. The locomotor system incorporates input from the
cerebellum, the motor cortex and the basal ganglia, as well as feedback from visual,
vestibular and proprioceptive sensors [19,20]. Under healthy conditions, this multi-level
control system produces a remarkably stable walking pattern; the kinetics, kinematics
and muscular activity of gait appear to remain relatively constant from one step to
the next even during unconstrained walking [21]. However, closer examination reveals
fluctuations in the gait pattern, even under stationary conditions [21,22]. The origin
and the implications of these fluctuations are unknown. In this section, we analyze
the step-to-step fluctuations in gait in order to gain insight into locomotor function
and its control mechanisms. To this end, we use the same DFA method we developed
for studying the dynamics of heartbeat time series. Ultimately, these insights should
increase the understanding of neurophysiological control of normal and pathological
walking and might also prove useful clinically in the diagnosis and prognosis of gait
disorders.

A representative stride interval time series is shown in Fig. 4a. First, note the sta-
bility of the stride interval; during a 9min walk the coefficient of variation was only
4%. Thus, a good first approximation of the dynamics of the stride interval would
be a constant. However, fluctuations occur about the mean. The stride interval varies
irregularly with some underlying complex “structure”. This structure changes after ran-
dom shuffling, as seen in Fig. 4b, demonstrating that the original structure is a result
of the sequential ordering of the stride interval and not a result of the stride interval
distribution. Fig. 4c shows the DFA plot with x = 0.83 for the original time series and
0.50 after random shuffling.

3.1. Changes in gait dynamics with aging and Huntington’s disease

To gain further insight into the basis for this long-term, fractal dependence in walk-
ing rhythm, we investigated the effects of advanced age and Huntington’s disease, a
neurodegenerative disorder of the central nervous system, on stride interval correlations
[23]. Using DFA, we compared the stride interval time series (i) of 10 healthy elderly
subjects and 22 healthy young adults, and (ii) of 17 subjects with Huntington’s disease
and 10 healthy controls.

We found that & was closer to 0.5 (uncorrelated, white noise) for the group of elderly
subjects. This indicates that the stride-interval fluctuations are more random and less
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Fig. 4. Representative stride interval time series (a) before and (b) after shuffling and (c) the DFA analysis.

correlated for elderly subjects than for the young subjects. o was 0.68 + 0.14 for the
elderly group versus 0.87 + 0.15 for the young group (p < 0.003).

Interestingly, the elderly and young subject groups had comparable similar average
stride intervals (elderly: 1.05 £ 0.10s; young: 1.05 & 0.07s) and required almost iden-
tical amounts of time to perform a standardized functional test of gait and balance. The
magnitude of stride-to-stride variability (i.e., stride-interval coefficient of variation) was
also very similar in the two groups (elderly: 2.0 + 0.7%; young: 1.9 & 0.4%). These
results show that while « was different in the two age groups, the gross measures of
gait and mobility function of these elderly subjects were not significantly affected by
age. Average gait speed of elderly subjects was slightly less than that of the young
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Fig. 5. Relationship between disease severity and degree of stride interval correlations (o) among subjects
with Huntington’s disease. Disease severity is measured using the total functional capacity (TFC) score
of the Unified Huntington’s Disease Rating Scale (0:=most impairment; 13=no impairment). This clinical
measure of function has been shown to correlate with positron emission tomography (PET) scan indices of
caudate metabolism.

subjects; however, o was not associated with gait speed (» = —0.07; p > 0.7). Fur-
thermore, multiple regression analysis demonstrated that even after adjusting for any
potential confounders (e.g., speed), age still remained independently associated with &
(p < 0.0005).

The scaling exponent o was also reduced in the subjects with Huntington’s disease
compared to disease-free controls (Huntington’s disease: 0.60 4 0.24; controls: 0.88
+ 0.17; p < 0.005). Moreover, among the subjects with Huntington’s disease, o« was
related to degree of functional impairment (r = 0.78, p < 0.0005; see Fig. 5).

4. Conclusions

Our finding of nontrivial long-range correlations (or power-law scaling) in healthy
heart rate and gait dynamics is consistent with the observation of long-range correlations
in other biological systems that do not have a characteristic scale of time or length [2].
Such behavior may be adaptive for at least two reasons. (i) The long-range correlations
serve as an organizing principle for highly complex, nonlinear processes that generate
fluctuations on a wide range of time scales. (ii) The lack of a characteristic scale helps
prevent excessive mode locking that would restrict the functional responsiveness of the
organism. Support for these related conjectures is provided by observations from severe
diseased states such as heart failure where the breakdown of long-range correlations is
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often accompanied by the emergence of a dominant frequency mode (e.g., the Cheyne—
Stokes frequency). Analogous transitions to highly periodic regimes have been observed
in a wide range of other disease states including certain malignancies, sudden cardiac
death, epilepsy and fetal distress syndromes [3].

It is known that biological systems contain a wide range of time scales. The scal-
ing exponents discussed here can be thought of as a quantitative measure of how
“balance” are these time scales. At least, for the purpose of first-order approximation
to the dynamics of these system. Therefore, subtle or intermittent degradation of scal-
ing properties may provide an early wamning of incipient pathology [17]. Finally, we
note that to fully describe the dynamics of these physiological systems, more sophisti-
cated methods are needed to probe the nonlinear interaction (coupling) between those
different time scales in the system.

In summary, we apply a new fluctuation analysis (modified from classical random-
walk analysis) to the nonstationary heartbeat time series from healthy subjects and
those with severe heart disease (congestive heart failure) as well as to normal stride
interval time series. We show that this method can detect the presence of long-range
correlations in physiological time series. Furthermore, this method is capable of iden-
tifying crossover behavior due to differences in scaling over short versus long time
scales. These findings are of interest from a physiologic viewpoint since it motivates
new modeling approaches to account for the control mechanisms regulating cardiac
and neuromuscular dynamics on different time scales. From a practical point of view,
quantification of these scaling exponents may have potential applications for bedside
and ambulatory monitoring [3].
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