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Rhythmic activities are ubiquitous in nature.
Synchronization of rhythmic patterns can be
found in interacting inanimate systems where
the mechanism of the coupling can usually be
identified and understood; it is also com-
monly observed in living systems where
the mechanisms of the interaction are less
apparent, and sometimes even mysterious.
To characterize the statistical properties—
and to develop a simple mathematical
model—of these couplings can shed some
light on an important class of phenomena
of interacting living systems. In PNAS,
Hennig (1) examines the cross-correlation
of tempo time series: that is, the time inter-
vals between successive musical beats, be-
tween two people playing rhythmic music
in synchrony. Hennig finds long-range
(power-law decayed) cross-correlation be-
tween the two synchronized tempo sequences.
To simulate the observed phenomenon,
Hennig proposes a simple mathematical
model that might also be helpful in pro-
viding some insights into other synchroni-
zation processes in nature.
It is expected that there should be coupling

in the tempo time series of musical rhythms
when two people are playing the music
together. The significance of Hennig’s work
is the special kind of correlation that appears
between two individuals playing music to-
gether. To appreciate this discovery, let us
first consider the case when one person is
producing musical rhythm alone. In this case,
it is expected that there will be correlation in
the tempo time series generated by the per-
son who plays the music. However, what type
of correlation? A simple and intuitive way to
think of correlation in time is that the corre-
lation is a result of the information propagat-
ing from one instance to the next. In the
most trivial case, a certain portion of the in-
formation is lost during each propagation. As
a result, an exponential decay of the correla-
tion is expected in this type of simple process.
No matter how tiny the information loss is
for each propagation, this process is still con-
sidered as “short-range” correlated. A char-
acteristic time scale, which describes the
exponential decay, is associated with the
decay of the correlation. Therefore, it was

interesting to discover that the tempo time
series of musical rhythm exhibits a different
type of correlation that does not decay in an
exponential fashion (2, 3). Specifically, the
tempo time series show “long-range” correla-
tion (LRC), which decays in a power-law
way, and no characteristic time scale can be
defined in this type of processes. See Fig. 1 for
a schematic comparison of short-range vs.
long-range correlation. These classes of LRC
processes are also known as 1/f noise and are
widely observed for complex systems in na-
ture (4). Thus, previous discovery was not
completely surprising, as many physiological
processes exhibit 1/f noise fluctuations (5).
One of the earliest tempo time series analyses
was done by Gilden et al. (6). In their exper-
iment, Gilden et al. presented a target time
interval to the test subjects, and then asked
the subjects to reproduce from memory—to
the best of their ability—a temporal series
that had the same interval. LRC was observed
in the time series created by the test subjects;
however, the mechanism of the correlation
was not fully understood. It is interesting to
note that decades after the discovery of these
phenomena, not much progress has been
achieved in understanding their origin.
The work by Hennig (1) is novel in two

different ways. First, he was able to quan-
tify the cross-correlation between two
people playing musical rhythms together,
and found that this interindividual corre-
lation is also long-range correlated. The
study requires a very careful analysis of
challenging time series that are highly
nonstationary. Without carefully detrending
the time series, the dominant nonstationary
properties could lead to spurious artifacts of
apparent correlation. Second, Hennig pro-
posed a simple mathematical model that
seems to be able to reproduce the dynamics
of the synchronization process. However,
the model assumes that the LRC in each indi-
vidual’s tempo time series is given; therefore,
it does not explain the mechanism of the
observed LRC of a solo player. This is a lim-
itation to the model.
Interestingly, in statistical physics LRC

shows up at the critical point of phase tran-
sition where the system is balanced between

order and disorder (7), which seems to be
a good analogy to music. Furthermore,
previous studies demonstrated that many
physiological time series, including vital
signs—such as heart beat, respiration, and
blood pressure—show 1/f fluctuations (8–
11) that also resemble musical rhythms.
Thus, it is not surprising that there have
been previous attempts to convert physio-
logic time series to music compositions
with enjoyable results (12).
Although it might be too early to forecast

what impact to the real world this interesting
work will bring, there are definitely reasons
to think that new discoveries and applications
will follow Hennig’s work (1). In addition
to making more pleasant synchronizing
rhythms of artificially generated music,
one possible direction to apply what was
discovered and proposed in Hennig’s paper
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Fig. 1. Illustration of “short-range” vs. “long-range” cor-
relations.The autocorrelation of a time series is measured as
a function of the time lag. Exponential decay of the auto-
correlation function (dashed line) is a straight line when
plotted on a linear-log graph (Upper), whereas long-range
correlation with a power law decay (solid line) is a straight
line when plotted on a log-log graph (Lower).
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is in the biomedical area. Many physiolog-
ical systems can be thought of as interact-
ing subsystems in synchrony under healthy
conditions, but the synchronization degrades
when the systems are under pathological

perturbation. Restoring the complex inter-
action between subsystems can have im-
portant clinical implications. For example,
one potential application is to design more
intelligent life-supporting systems for critical

care with built-in physiological fluctuations
that can dynamically interact with the pa-
tient’s own physiological rhythms. This type
of intelligent system could have great benefit
to patients’ health.
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